In Vitro and In Vivo Anticancer Effects of D/L-alpha-metyrosine (SM-88), A Novel Metabolism-Based Therapy

Alexander Vandell¹

Jonathan Eckard¹

Steve Hoffman¹

Giuseppe Del Priore¹

Martin Fernandez-Zapico²

¹TYME Inc.; New York, New York

²Mayo Clinic; Rochester, Minnesota

INTRODUCTION

- D/L-alpha-metyrosine (SM-88, racemetyrosine) has displayed broad anticancer activity in patients across 15 different tumor types. While amino acid metabolism has been leveraged in oncology imaging for decades, SM-88 offers a potential novel therapeutic approach to selectively disrupt cancer cells.
- A comprehensive in vitro and in vivo experimental program is underway to elucidate the mechanism of action and further characterize the anti-cancer effects of SM-88.
- In vitro effects on apoptosis, viability, reactive oxygen species induction, autophagy, migration and invasion, cell cycle changes, and protein synthesis are being
- In vivo xenograft models are being used to explore the anti-cancer effects of SM-88 and its potential as an immune modulator.
- This poster provides an update on in vitro and in vivo data as of May 29, 2020.

METHODS

- In all in vitro cell line experiments, and the Pan02 xenograft model, the SM-88 methyl-ester (SM-88 ME) was used, which has the same active moiety as SM-88, but with improved solubility characteristics. The SM-88 free acid form was used in the HCT-116 xenograft experiment
- Autophagy: Changes in LC3B and p62 expression were investigated using standard Western Blot techniques.
- ROS Induction: Following treatment with SM-88, ROS induction was assessed using the CellROX (Thermo-Fisher) flow cytometry assay kit. Gating for ROS+/live cell selection was based on data obtained from negative
- HCT-116 Xenograft: Female athymic nude mice were implanted subcutaneously with HCT-116 cells. Once tumors reached 50-100 mm³, mice were treated with either Vehicle alone, 81 mg/kg/day SM-88, 162 mg/kg/day SM-88, or 324 mg/kg/day SM-88 administered orally (n = 11 per group).
- Pan02 Xenograft Study: C57BL/6 mice were treated with either Vehicle alone, 25 mg/kg/day of SM-88 ME via intraperitoneal (IP) injection, or 75 mg/kg/day of SM-88 ME IP (n = 10 per group). Treatments began on Day 0. On Day 4, Pan02 cells were implanted subcutaneously into each mouse.
- Tumor Immune Profiling: On Day 34, Pan02 tumors from five randomly selected mice per treatment arm were processed for immune analysis by flow cytometry using a 16 color myeloid and lymphocyte panel following standard protocols.

Oral Administration of SM-88 Reduces Tumor Growth

Number of HCT-116 Tumor-bearing Mice Alive on Each Treatment Day						
Day	1	5	8	12	15	19
Vehicle	11	11	11	11	11	11
81 mg/kg	11	11	11	11	11	11
162 mg/kg	11	11	11	11	11	10
324 mg/kg	11	11	11	11	11	9

- A pilot in vivo xenograft experiment was conducted to evaluate the effects of SM-88 in a colon
- HCT-116 tumor growth in mice treated with orally administered 324 mg/kg/day SM-88 was significantly reduced compared to those treated with Vehicle alone by Day 19 after treatment initiation (p < 0.05).
- No differences in body weight changes were noted between treatment groups.

IP Administration of SM-88 Reduces Tumor Growth in a

Pan02 Pancreatic Cancer Syngenic Xenograft Model

No differences in body weight changes were noted between treatment groups.

(~2.5% of total body weight), with an indication of dose-related effect.

pancreatic cancer model.

All mice (n=30) were alive at end of treatment (Day 34).

• To further evaluate the anti-cancer effects of SM-88, a second in vivo experiment was conducted using a

significantly reduced compared to those treated with Vehicle alone on Day 34 after treatment initiation

Pan02 tumor growth in mice treated with intraperitoneally administered 75 mg/kg/day SM-88 ME was

Excised Pan02 tumors (Day 34) from the subcutaneous xenograft model are shown in Figure 2b.

A higher proportion of mice treated with SM-88 maintained tumors below a volume of 500mm³

RESULTS

collected at study termination (Day 34). • Exposure to SM-88 appears to decrease intra-tumoral CD4+T cell populations, while preserving

Alterations to the Pan02 Tumor Microenvironment

Following Exposure to SM-88 (Day 34)

- CD8+ populations, leading to decreases in the CD4+/CD8+ ratio.
- CD4/CD8 ratio was p= 0.015 for 75 mg/kg/day vs. Vehicle (ANOVA with Tukey post hoc).
- N = 5 for all treatment groups.

- immunosuppressive signaling within the tumor.
- Small increases in intracellular B cell populations were also observed following treatment with SM-88
- N = 5 for all treatment groups.

- Exposure to SM-88 may preserve M1 polarized macrophage populations while decreasing populations of M2 polarized macrophages.
- Within the tumor microenvironment, M1 macrophages have anti-tumor effects, while M2 macrophages often promote tumor growth.
- Thus, alterations in the M1/M2 ratio could contribute to suppression or reversal of tumor growth.
- N = 5 for all treatment groups.

SM-88 Induces Reactive Oxygen Species (ROS) Production

SM-88 Affects Autophagy

- cancer (Pan02 and PANC1) and one ovarian cancer (HeLa).
- 24 hours in PANC1 and HeLa cells Exposure to 1 mM SM-88 ME
- promoted an increase in LC3B expression beginning at least 6 hours after treatment in both Pan02 and PANC1 cells.
- SM-88 ME exposure either did not affect or slightly increased p62 expression.
- These data suggest that SM-88 affects autophagic mechanisms, and follow-up experiments are underway to determine whether the increases in LC3B expression are due to autophagy induction or blockade of autophagosome and lysosome fusion.

CONCLUSIONS

- The importance of amino acid metabolism in cancer has gained greater awareness over the past decade; however, potential therapeutic approaches in this area remain limited.
- SM-88 has been dosed in over 180 cancer patients and has shown encouraging efficacy and safety findings to date.
- Early data indicate that SM-88 may promote increases in ROS generation and alterations in autophagy in certain cancer cell types (Pan02 pancreatic cancer)
- Potential immune modulatory effects of SM-88, including alterations in macrophage polarization and other key tumor immune cells (CD4+ and Treg) are being examined.

DISCUSSION AND FUTURE DIRECTIONS

- SM-88 has demonstrated encouraging efficacy in 15 different tumor types. This may be due to the effects of SM-88 on cancer through multiple mechanisms, including immune modulation, alterations in autophagy and ROS induction.
- Alterations in autophagy have been associated with increased MHC1 expression in pancreatic cancer (Yamamoto et al., 2020). We are deepening our examination of the impact of SM-88 on autophagy/mitophagy, as well as any phenotypical changes that might be related to these changes including MHC1 expression.
- We are continuing to explore the immune modulatory effects observed in these preliminary experiments.
- Based on these and other ongoing experiments, we are beginning to explore SM-88 combinations with chemotherapies, targeted agents, or immuno-oncology therapies.
- We are continuing to explore these and other effects of SM-88, as well as potential biomarkers of SM-88 sensitivity, through experiments on human organoids, and metabolomic and gene expression analyses.

REFERENCES

- 1. Yamamoto, Keisuke et al. "Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I." Nature vol. 581,7806 (2020): 100-105. doi:10.1038/s41586-020-2229-5
- 2. Renz, Bernhard W et al. "β2 Adrenergic-Neurotrophin Feedforward Loop Promotes Pancreatic Cancer." Cancer cell vol. 33,1 (2018): 75-90.e7. doi:10.1016/j.ccell.2017.11.007
- 3. Zheng, Gen et al. "Human D-Tyr-tRNA(Tyr) deacylase contributes to the resistance of the cell to D-amino acids." The Biochemical journal vol. 417,1 (2009): 85-94. doi:10.1042/BJ20080617
- 4. Kim, Hye-Jung, and Harvey Cantor. "CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful." Cancer immunology research vol. 2,2 (2014): 91-8. doi:10.1158/2326-6066.CIR-13-0216
- Nagano, Taiki et al. "d-amino acid oxidase promotes cellular senescence via the production of reactive oxygen species." Life science alliance vol. 2,1 e201800045. 18 Jan. 2019, doi:10.26508/lsa.201800045

(e): alexander.vandell@TYMEinc.com (ph): +1 (212) 461-2314

